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Multi-point correlations and
dual boundary conditions

3.1 Introduction and main results

As we have seen in Chapter 2, the partition function of the Ising model on a planar
graph G with positive boundary conditions is proportional to the even subgraph gener-
ating function ZG⇤

(x), where G⇤ is the weak dual of G and x is the weight vector defined
by the low-temperature expansion. Similarly, the partition function of the model with
free boundary conditions is proportional to ZG(x), where x is the high-temperature
weight vector. This is the famous Kramers–Wannier duality of the planar Ising model.
We used it together with Theorem 2.10 to express the free energy density and the cor-
relation functions in terms of signed loops. Then, by analyzing the asymptotic growth
rate of the signed loops, we were able to show analyticity of the free energy density
and describe the behaviour of the correlation functions for off-critical temperatures.
However, the low-temperature loop expansions work only for � 2 (�c,1) and the
high-temperature loop expansions are valid only for � 2 (0,�c). This is because for
� = �c, the spectral radius of the associated transition matrices (2.13) becomes 1 in the
thermodynamic limit, and the loop expansions work only when this spectral radius is
smaller than 1. Hence, our formulas for the Ising model with positive boundary con-
ditions concerned only the low-temperature regime and the results for the model with
free boundary conditions were true only at high temperatures.

This was not an issue for the free energy density since, by a standard argument, it
is independent of boundary conditions. The main aim of this chapter is to prove the
analogous independence for the two-point functions. To this end, we will analyze ex-
pansions for the Ising model with the dual boundary conditions, i.e. we will use the
high-temperature expansion for positive boundary conditions and the low-temperature
expansion for free boundary conditions. This will result in more complicated formulas
for the correlation functions. They will be expressed in terms of sums of generating
functions of graphs with odd degrees at certain vertices and even degrees everywhere
else. To study such generating functions, in Section 3.2, we introduce the notions of
pinned generating functions of even subgraphs and loops, and we describe their proper-
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46 Chapter 3. Multi-point correlations and dual boundary conditions

ties. The pinned generating functions can be seen as generalizations of the generating
functions used in the proof of Theorem 2.7. In Sections 3.4, 3.5 and 3.6, we show how
the correlation functions can be expressed in terms of pinned generating functions. All
these considerations will lead to a result dual to Theorem 2.7 (see Section 2.1.2 for the
notation):

Theorem 3.1. For all � 2 (0,�c) and u, v 2 Z2 (u 6= v),

lim

G!Z2
h�u�vi+G,� =

✓ 1
X

r=1

fuu⇤

r (x0
�)

◆

h�u⇤�v⇤ifree
Z2⇤,�⇤ =: h�u�vi+Z2,� .

As a corollary to Theorems 2.7 and 3.1, we will obtain that the off-critical two-point
functions are independent of boundary conditions:

Corollary 3.2. For all � 6= �c and u, v 2 Z2,

h�u�vi+Z2,� = h�u�vifree
Z2,� .

Note that this is a classical result and we only provide an alternative derivation of
it. A proof of the above equality for all values of � can be found e.g. in [43], where it
is given for general Ising models with periodic interactions. It uses the fact that the free
energy density limit is continuously differentiable in �. Alternative proofs which use
the random cluster representation of the Ising model can be found in [24, 30]. In our
approach, we are able to prove this identity only for non-critical temperatures. This is
because the loop expansions at criticality reach their radius of convergence, and it is dif-
ficult to analyze infinite series at their radius of convergence. Nonetheless, our methods
can be used to prove analogous results for aperiodic Ising models (see Chapter 4) and
the combinatorial identities presented in this chapter yield other interesting properties
of the correlation functions (see e.g. Theorem 3.3).

For simplicity of the exposition, we have so far considered Ising models on rectan-
gular subgraphs of the square lattice. However, the combinatorial notions developed in
Chapter 2 work for arbitrary graphs in the plane. In this chapter, we will present sev-
eral side results about the correlation functions of the Ising model on a general graph G
embedded in the plane without edge crossings. Hence, we will need a definition of the
Ising measure (2.1) which is suitable for this setting.

To this end, let @G be the set of vertices incident to the unbounded face of G =

(V,E), and let ⌦+

G and ⌦

free
G be as in (2.1). Until now, we have assumed that the in-

teraction between spins is uniform and given by the inverse temperature �. To model
non-homogenous interactions between spins, we introduce a vector of positive (ferro-
magnetic) coupling constants (Je)e2E . The Ising model with coupling constants J is
given by the following probability measure on the space of spin configurations:

P2
G,�(�) =

1

Z2
G,�

Y

uv2E

e�Juv�u�v , � 2 ⌦

2
G, (3.1)
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where 2 2 {free,+} as before, and Z2
G,� is the partition function, i.e.

Z2
G,� =

X

�2⌦

2

Y

uv2E

e�Juv�u�v . (3.2)

Note that the homogenous Ising model from the previous chapter is recovered by taking
J ⌘ 1.

Let A ⇢ V and �A =

Q

v2A �v . Recall that by h�Ai2G,� , we denote the average
of �A with respect to P2

G,� . If A contains more than two spins, we call this average a
multi-point function. As a side corollary of the properties of pinned generating func-
tions, we will rederive in Section 3.4 the following, interesting in itself, result about
boundary spin correlation functions:

Theorem 3.3 (Boel & Groeneveld & Kasteleyn, [7]). Let A be a set of vertices lying
on the boundary of one face of G, such that |A| is even. Then,

h�Aifree
G,� =

X

⇡2P(A)

sgn(⇡)
Y

{u,v}2⇡

h�u�vifree
G,� .

Above, the sum is taken over all pairings of the vertices in A, and sgn⇡ = ±1, de-
pending on the parity of the number of crossings induced by the paring ⇡. For precise
definitions, see the next section.

This chapter is organised as follows: in Section 3.2, we introduce the notions of
pinned generating functions and state their main properties. In Sections 3.3 and 3.4,
we shortly discuss the multi-point correlation functions, and using the results from Sec-
tion 3.2, we provide a new proof of Theorem 3.3. In Sections 3.5 and 3.6, we present
formulas for the correlation functions with the dual boundary conditions. In Section 3.7
we prove the combinatorial results and in Section 3.8, we prove the results for the Ising
model.

3.2 Stars and pinned generating functions
Let G = (V,E) be a graph in the plane. We assume that all its edges are representative
in the sense of Section 2.1.3. Let v• be a fixed additional vertex, i.e. v• /2 V , and let A ⇢
V be a set of even cardinality. By S(v•, A) or simply by S(A), we denote the star graph
�{v•} [ A,

S

v2A{v•v}
�

. We assume that the edges of S are additional in the sense of
Section 2.1.3. Moreover, we assume that the edges of S may be piecewise linear (we
do not want to assign any particular vertex to the turning points of an edge) and that no
two edges cross each other. For instance, Figures 3.1 and 3.2 below show star graphs
with piecewise linear edges. However, when we will talk about transition matrices for
graphs containing a star S , we will mean the standard transition matrix (2.13) of the
graph with vertices added at all turning points of the edges of S .

Let ES be the edge set of S and let x = (xe)e2E[ES be a complex weight vector.
We denote by ZG,S(x) the generating function of even subgraphs of G [S pinned at S ,
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i.e.

ZG,S(x) =
X

ES⇢F⇢E[ES
F even

(�1)

C(F )

Y

e2F

xe, (3.3)

where C(F ) is as in (2.10). Note that the condition that |A| is even is necessary for the
above sum to be non-trivial.

We say that an unordered configuration of loops {`
1

, . . . , `s} is pinned at S and we
write {`

1

, . . . , `s} ` S if each loop `i goes through at least one edge from S , and each
edge in S is traversed exactly once by exactly one loop `i. Note that if {`

1

, . . . , `s}
is pinned at S , then all the loops `i are distinct and have multiplicity 1. We define the
generating function of loops in G [ S pinned at S by the formal sum

�G,S(x) =

1
X

r=1

|ES |/2
X

s=1

X

{`1,...,`s}`S
r(`1)+···+r(`s)=r

s
Y

i=1

w(`i;x),

where the loops `i are in G [ S . Recall from see Section 2.1.3 that r(`) is the number
of representative edges (with multiplicities) which are traversed by `.

Let ⇢G(x) be the spectral radius of the transition matrix ⇤G(x). The following
results present the basic properties of the generating functions defined above.

Lemma 3.4. Let S be as above. If ⇢G(x) < 1, then

�G,S(x) =
ZG,S(x)

ZG(x)
.

Note that the above result implies that �G,S(x) is convergent whenever ⇢G(x) < 1.
Recall from Section 2.2.1 that a pairing at v• is a partition of A into sets of size 2.

We denote by P(A) the collection of all pairings at v•. If ⇡ 2 P(A), then we put
sgn(⇡) = �1 if the number of crossings in S induced by ⇡ at the vertex v• is odd, and
sgn(⇡) = 1 otherwise (see the proof of Proposition 2.12). Note that, since the edges
may be piecewise linear, the sign of a pairing depends on the way S is embedded in the
plane. If S has only two arms, i.e. A = {u, v}, then to avoid unnecessary brackets, we
will write S = S(u, v).
Lemma 3.5. Let S be as above. If ⇢G(x) < 1, then

�G,S(x) =
X

⇡2P(A)

sgn(⇡)
Y

{u,v}2⇡

�G,S(u,v)(x). (3.4)

Let S = S(A) and S 0
= S(A0

) be two stars such that A and A0 are disjoint, and
such that the edges of S and S0 do not cross each other.

Lemma 3.6. Let S and S 0 be as above. Let ⇡ 2 P(A) and ⇡0 2 P(A0
). Then, the

value of
sgn(⇡ [ ⇡0

) sgn(⇡) sgn(⇡0
),
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where sgn(⇡ [ ⇡0
) is computed in the star S [ S 0, is independent of the choice of ⇡

and ⇡0.

Define sgn(S,S 0
) = sgn(⇡ [ ⇡0

) sgn(⇡) sgn(⇡0
), where ⇡ 2 P(A) and ⇡0 2 P(A0

).
This is well defined by the lemma above. Let P(A,A0

) = {⇡ [ ⇡0
: ⇡ 2 P(A), ⇡0 2

P(A0
)} ⇢ P(A [A0

). By splitting the sum in Lemma 3.5 into a sum over the pairings
from P(A,A0

) and the rest and using Lemma 3.6, we obtain the following corollary:

Corollary 3.7. Let S and S 0 be as above. If ⇢G(x) < 1, then

�G,S[S0
(x) = sgn(S,S 0

)�G,S(x)�G,S0
(x)+

X

⇡2P(A[A0
)

⇡/2P(A,A0
)

sgn(⇡)
Y

{v,u}2⇡

�G,S(v,u)(x).

Remark 3.8. We said that the pinned generating functions are generalizations of the
functions used in the proof of Theorem 2.7. Indeed, note the similarity of (3.3) to the
right-hand side of (2.46), where the path � from Theorem 2.7 is seen as a star S with
two arms. Then, the generating function �G,S(x) = �G,�(x) is the sum of signed
weights of single loops which go through � exactly once. This sum appears in the
statements of Theorems 2.7 and 3.1.

3.3 Low-temperature multi-point functions
The generalization of the low-temperature formulas with positive boundary conditions
(2.40) and (2.41) to multi-point functions is straight-forward. To make this exposition
more complete, we will briefly present it in this section. To this end, fix a vertex v• /2 V

and let A ⇢ V \ @G. If |A| is even, then choose a star graph S = S(A). Otherwise,
choose a vertex v 2 @G and a graph S = S({v} [ A). Recall that by G⇤

= (V ⇤, E⇤
),

we denote the weak dual graph of G and by e⇤, the only edge of G⇤ crossing e. To each
even subgraph F of G⇤, there bijectively corresponds a spin configuration �(F ) 2 ⌦

+

G ,
such that (uv)⇤ 2 F if and only if �u(F ) 6= �v(F ). Note that �A(F ) = �1 if the
edges of S cross F an odd number of times, and �A(F ) = 1 otherwise. This yields

h�Ai+G,� =

 

X

F⇢E⇤

F even

�A(F )

Y

e2F

xe

!

.

 

X

F⇢E⇤

F even

Y

e2F

xe

!

=

ZG⇤
(x0

)

ZG⇤
(x)

, (3.5)

where xe⇤ = exp(�2�Je), and x0
e⇤ = �xe⇤ if e⇤ is crossed an odd number of times by

the edges of S and xe⇤ = x0
e⇤ otherwise.

We say that a loop in G⇤ is A-odd if its total winding number around the vertices
of A is odd. Equivalently, a loop is A-odd if it crosses the edges of S an odd number
of times, where S is any star constructed as above. From Theorem 2.10, (3.5) and the
definition of the weight vector x0, it follows that if ⇢G⇤

(x) < 1 and ⇢G⇤
(x0

) < 1, then

h�Ai+G,� = exp

✓

�2

1
X

r=1

X

`2LA
r (G⇤

)

w(`;x)

◆

, (3.6)
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where LA
r (G⇤

) is the set of all A-odd loops of length r in G⇤.

Remark 3.9. Using (3.6) and the arguments from the proof of Corollary 2.6, one can
prove that in the low-temperature Ising model on the square lattice, the spins decorre-
late exponentially fast, i.e. for � 2 (�c,1), h�A�A0i+Z2,� is close to h�Ai+Z2,�h�A0i+Z2,�

with the error being exponentially small with respect to the distance between the sets of
vertices A and A0. The idea of the proof is as before: if A and A0 are far away from
each other, then the loops which are simultaneously A-odd and A0-odd have to be long
since they have to wind around the vertices from both A and A0. Using the bounds on
the spectral radius from Theorem 2.11, one can prove that the total signed weight of
such loops is exponentially small.

3.4 High-temperature multi-point functions

In this section, we assume that |A| is even. Otherwise, the considered correlation
functions are trivially zero. Performing the high-temperature expansion for h�Aifree

G,�
as explained in Section 2.4.1, we arrive at a formula involving a generating function
of subgraphs of G, which have odd degrees at the vertices from A and even degrees
everywhere else, i.e.

h�Aifree
G,� =

1

ZG(x)

X

F⇢E
�F=A

Y

e2F

xe, (3.7)

where �F is the set of vertices with odd degree in the graph (V, F ), and xe = tanh�Je.
We can translate this formula into the language of pinned generating functions. To this
end, fix v• /2 V and a star graph S = S(A). Then,

h�Aifree
G,� =

ZG,S(x
0
)

ZG(x)
, (3.8)

where x is as above, x0
v•v = 1 for any v 2 A, x0

e = �xe if e 2 E and e is crossed an
odd number of times by the edges of S , and xe = x0

e otherwise. As before, the sign
changes in the weight vector are to compensate for the signs in the definition of the
pinned generating function. Using Lemma 3.4, we obtain that if ⇢G(x0

) < 1, then

h�Aifree
G,� = �G,S(x

0
)

ZG(x
0
)

ZG(x)
. (3.9)

Note that by (3.5), as in the case of the two-point function (2.49), the above ratio of
graph generating functions, can be interpreted as a multi-point function for positive
boundary conditions on a graph, whose weak dual is G.

Remark 3.10. Using (3.9) and Corollary 3.7, one can prove that in the high-temperature
Ising model on the square lattice, the spins also decorrelate exponentially fast, i.e. for
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� 2 (0,�c), h�A�A0ifree
Z2,� is close to h�Aifree

Z2,�h�A0ifree
Z2,� with the error being exponen-

tially small with respect to the distance between the sets of vertices A and A0. The idea
of the proof is as follows: by (3.9) and Remark 3.9, it is enough to prove an analogous
statement for the functions �G,S(A[A0

)

and �G,S(A)

�G,S(A0
)

(with appropriate weight
vectors). By Corollary 3.7, the difference between these two is expressed in terms of
two-point pinned generating functions involving loops of length at least the distance
between A and A0. Using the bound on the operator norm of the transition matrix from
Theorem 2.11, we conclude that that this difference is exponentially small. Note that a
similar reasoning will be used in the proof of Theorem 3.1.

Suppose now that all vertices from A lie on the boundary of one face of G. Let v•
lie inside this face and let S be such that its edges do not cross any edge from G. In this
case, for ⇡ 2 P(A), sgn(⇡) is independent of the embedding of S . By (3.9), we have
that if ⇢G(x) < 1, then

h�Aifree
G,� = �G,S(x). (3.10)

The proof of Theorem 3.3 is now very short:

Proof of Theorem 3.3. By Lemma 3.5 and (3.10), if ⇢G(x) < 1, where xe = tanh�Je,
then the desired identity holds true. Since the spectral radius is continuous in �, it is
smaller than 1 on some open neighbourhood of 0. Since on both sides we have real
analytic functions of � which agree on the neighborhood of 0, by uniqueness of the
analytic continuation, they agree on the whole interval (0,1).

Note that Theorem 3.3 was also proved in [32, 33] in the setting of correlation
functions and fermionic observables on the square lattice. Since these observables are
given by generating functions which are similar to � (see Chapter 5), our methods allow
to generalize the result of [32, 33] to all planar graphs.

3.5 Low-temperature correlations
with free boundary conditions

In the low-temperature expansion, one sums over the subgraphs of the dual graph which
define boundaries between clusters of positive and negative spins in a spin configuration
on the primal graph. In the case of positive boundary condition, this resulted in sum-
ming over all even subgraphs of the weak dual graph. With free boundary conditions,
the contours that arise in this method are the even subgraphs of the full dual graph. This
is problematic since usually, the full dual graph has one vertex of a very high degree,
which in turn can result in a large spectral radius of the transition matrix for this graph.
We want to use loop expansions and these work under the condition of the spectral
radius being smaller than 1. Hence, we will have to work with the pinned generating
functions rather than the even subgraph generating function for the full dual graph. The
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pinned generating functions have loop expansions under an intuitively weaker condi-
tion, namely that the spectral radius of the transition matrix for the weak dual graph is
smaller than 1.

Let A ⇢ V be of even cardinality and let G?
= (V ?, E?

) be such that its weak
dual is G (see Figure 3.1). To each F ⇢ E? satisfying �F ⇢ @G? and bb0 /2 F for
all b, b0 2 @G?, there correspond exactly two, equally probable, spin configurations
�(F ),�0

(F ) 2 ⌦

free
G satisfying �(F ) = ��0

(F ), for which F defines the boundaries
between clusters of positive and negative spins. Since |A| is even, �A(F ) = �0

A(F ).
Hence, without changing the value of the correlation function, we can choose an ar-
bitrary vertex and condition on the spin there being positive. After conditioning, to
each F there corresponds exactly one of the spin configurations �(F ),�0

(F ). From the
low-temperature expansion, we have

h�Aifree
G,� =

 

X

B⇢@G?

X

F⇢E?

�F=B

�A(F )

Y

e2F

xe

!

.

 

X

B⇢@G?

X

F⇢E?

�F=B

Y

e2F

xe

!

,

where xe = exp(�2Je⇤�) if e⇤ 2 E, and xbb0 = 0 if b, b0 2 @G?.
We want to express this formula in terms of pinned generating functions. To this

end, fix a vertex v• somewhere in the unbounded face of G?, and let S = S(v•, @G?
)

be a star whose edges do not cross any edge from E?. Moreover, fix a star graph
S 0

= S(v⇤, A) for some vertex v⇤ (it can be v• or some other additional vertex). If
B ⇢ @G?, then we will assume that the embedding of S(B) = S(v•, B) uses the
appropriate subset of the edges drawn for S. If F is as above, then �A(F ) = �1 if the
edges of S 0 cross the edges of F an odd number of times, and �A(F ) = 1 otherwise.
Hence,

h�Aifree
G,� =

⇣

X

B⇢@G?

ZG?,S(B)

(x0
)

⌘.⇣

X

B⇢@G?

ZG?,S(B)

(x)
⌘

, (3.11)

where xvv• = 1 for any v, and x restricted to E? is as above. The modified weight
vector x0 satisfies: x0

e = �xe if e is crossed an odd number of times by the edges of S0,
and x0

e = xe otherwise.

3.6 High-temperature correlations
with positive boundary conditions

Let A ⇢ V \ @G. For positive boundary conditions, the subgraphs of G that appear in
the high-temperature expansion of the correlation function h�Ai+G,� have, as before, odd
degrees at all vertices from A. However, unlike in the case of free boundary conditions,
they can also have odd degrees at the vertices from @G. This is due to the fact that
the boundary spins are fixed. Hence, graphs which have odd degrees on the boundary
do not vanish from the expansion when one interchanges the order of summation as it
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v•

u

v
v⇤

Figure 3.1: A rectangle G with its graph G? (dashed edges). The bold edges show a
graph S(B) appearing in the low-temperature expansion for free boundary conditions.
The removed edges of G? correspond to the zeroed coordinates of the weight vectors x
and x0. The shaded area indicates positive spins. The star graph S(v⇤, {u, v}) drawn in
bold dashed lines is used to define the weight vector x0.

was done in (2.32). Also note that the edges connecting two boundary vertices of G are
immaterial since they contribute a common constant factor to the probability of all spin
configurations. Hence, these edges get a zero weight in the expansion:

h�Ai+G,� =

 

X

B⇢@G

X

F⇢E
�F=A[B

Y

e2F

xe

!

.

 

X

B⇢@G

X

F⇢E
�F=B

Y

e2F

xe

!

,

where xbb0 = 0 if b, b0 2 @G, and xe = tanh�Je otherwise.

We will translate this formula to the language of pinned generating functions. To
this end, fix a vertex v• somewhere in the unbounded face of G and let S = S(A). If
B ⇢ @G, then we assume that the graph S(B) does not have any edge crossings with G
and S . Using the above formula, we get

h�Ai+G,� =

⇣

X

B⇢@G
ZG,S[S(B)

(x0
)

⌘.⇣

X

B⇢@G
ZG,S(B)

(x)
⌘

, (3.12)

where xv•v = 1 for all v, and x restricted to E is as above. The modified weight vector
x0 satisfies: x0

e = �xe if e is crossed by the edges from S(A) an odd number of times,
and x0

e = xe otherwise.



54 Chapter 3. Multi-point correlations and dual boundary conditions

u⇤

v⇤

u

v

b0

b

v•

Figure 3.2: A path � connecting u and v as in Figure 2.1, and a star graph S =

S({u, v, b, b0}) used in the high-temperature expansion for positive boundary condi-
tions. The weight vector x0 defined for S in (3.12) and the weight vector x0

� defined
in (2.45) are in this case equal on the edges of the rectangle.

3.7 Proofs of the combinatorial identities
Proof of Lemma 3.6. Note that sgn(⇡ [ ⇡0

) sgn(⇡) sgn(⇡0
) is negative if and only if

the number of crossings at v• between the walks induced by ⇡ and ⇡0 is odd. Also
note that if u, v, w, z, u0, v0 are distinct, then the number of crossings between the walks
(u, v•, v), (w, v•, z) and the walk (u0, v•, v

0
) has the same parity as the number of cross-

ings between the walks (u, v•, z), (w, v•, v) and the walk (u0, v•, v
0
). Starting with a

fixed pairing, one can obtain any other pairing by repeatedly interchanging connections
as above. Hence, the claim of the lemma follows.

Proof of Lemma 3.4. We will use Theorem 2.10 and the following formula:

ZG,S(x) =
Y

e2ES

xe

h⇣

Y

e2ES

@

@xe

⌘

ZG[S(x)
i

�

�

�

�

xe=0, e2ES

. (3.13)

Let ⇢
0

be such that ⇢ = ⇢G(x) < ⇢
0

< 1. By continuity of the spectral radius, we can
choose t so small that ⇢G[S(y) < ⇢

0

whenever y 2 Bt, where

Bt = {y 2 CE[ES
: ye = xe for e 2 E, and |ye| < t for e 2 ES}.

Suppose that y 2 Bt and let

fr(y) =
X

`2Lr(G)

w(`; y) and gr(y) =
X

`2Lc
r(G)

w(`; y),

where Lr(G) is the set of all loops of length r in G and Lc
r(G) = Lr(G [ S) \ Lr(G).

As in (2.21), we can express fr(y) and gr(y) in terms of the eigenvalues of ⇤G(y) and
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⇤G[S(y), and we conclude that |fr(y)|  2|E|⇢r and |gr(y)|  4|E|⇢r
0

. Similarly to
the proof of Theorem 2.9, it follows that

|hr,s(y)| := 1

s!

�

�

�

�

�

X

(`1,...,`s)2(Lc
(G))s

r(`1)+···+r(`s)=r

s
Y

i=1

w(`i; y)

�

�

�

�

�

 4

s|E|s
s!

✓

r � 1

s� 1

◆

⇢r
0

uniformly for all y 2 Bt. This, together with Theorem 2.10, allows us to write

ZG[S(y) = exp

✓ 1
X

r=1

fr(y) +

1
X

r=1

gr(y)

◆

= exp

✓ 1
X

r=1

gr(y)

◆

ZG(y)

=

✓

1 +

1
X

r=1

1
X

s=1

hr,s(y)

◆

ZG(x). (3.14)

Since ES does not contain a cycle, hr,s(y) are polynomials and hence holomorphic
functions of each of the complex variables xe, e 2 ES . It follows from the above
bound that the double series in (3.14) is uniformly convergent on Bt to a holomorphic
function in the variables xe, e 2 ES . This allows us, after combining (3.13) and (3.14),
to perform the partial differentiation term after term. We arrive at the desired formula
after realizing that the factor 1/s! from the definition of hr,s(y) vanishes because the
only configurations which survive the evaluation at 0 are the configurations pinned at
S , and in particular, they are composed of distinct loops.

Proof of Lemma 3.5. Let {`
1

, . . . , `s} be pinned at S . Note that {`
1

, . . . , `s} induces a
pairing at v•, where two vertices are paired when they are connected within G by one of
the loops `i. To be more precise, let u 2 A and let `i be the unique loop which traverses
the edge v•u. Then, u is paired with the vertex v 2 A, which is the only vertex with the
property that `i traverses a walk of the form (v•, u, w1

, . . . , wn, v, v•) or its reversion,
where wi 6= v• for i = 1, . . . , n. We call this pairing ⇡(`

1

, . . . , `s).
Let ⇡(`

1

, . . . , `s) = {{u
1

, v
1

}, . . . , {uk, vk}}, where k = |A|/2, and let `0i, i =

1, . . . , k, be the loop defined by the closed walk (v•, ui, w1

, . . . , wn, vi) as above. Note
that {`0i} is pinned at S(ui, vi) and {`0

1

, . . . , `0k} is pinned at S . Consider the map

{`
1

, . . . , `s} 7! {`0
1

, . . . , `0k}. (3.15)

This assignment of the “refined” configuration of loops is not injective since it does not
depend on how the loops `i traverse the edges of S . Moreover, the inverse image under
this map of any configuration {`0

1

, . . . , `0k} of k loops pinned at S consists of exactly
|P(A)| configurations {`

1

, . . . , `s}, also pinned at S , which differ only in the way the
loops connect at v•. Let us denote this inverse image by I(`0

1

, . . . , `0k). Note that in
particular {`0

1

, . . . , `0k} 2 I(`0
1

, . . . , `0k).
Suppose that the configuration {`

1

, . . . , `s} is edge disjoint (see Section 2.2.1).
Let C•(`1, . . . , `s) be the total number of vertex crossings between the loops at v•
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(including self-crossings), and let C(`
1

, . . . , `s) be the total number of the remain-
ing vertex and edge crossing between the loops (including self-crossings). Note that
sgn

�

⇡(`0
1

, . . . , `0k)
�

= (�1)

C•(`
0
1,...,`

0
k) and C(`

1

, . . . , `s) = C(`0
1

, . . . , `0k). From the
fact that

P

⇡2P(A)

sgn(⇡) = 1 (see the proof of Proposition 2.12) and from (2.15), it
follows that

X

{`1,...,`s}
2I(`01,...,`

0
k)

s
Y

i=1

sgn(`i) =
X

{`1,...,`s}
2I(`01,...,`

0
k)

(�1)

C•(`1,...,`s)+C(`1,...,`s)

= (�1)

2C•(`
0
1,...,`

0
k)+C(`01,...,`

0
k)

= sgn

�

⇡(`0
1

, . . . , `0k)
�

k
Y

i=1

sgn(`0i).

By considering the winding angles instead of crossings, the outermost identity can be
also proved without the assumption of the loops being edge disjoint. Since the map
(3.15) does not change the absolute value of the weight of a loop configuration, it fol-
lows that for all r,

k
X

s=1

X

{`1,...,`s}`S
r(`1)+···+r(`s)=r

s
Y

i=1

w(`i;x)

=

X

⇡2P(A)

sgn(⇡)
X

r1+···+rk=r

k
Y

i=1

 

X

{`0}`S(ui,vi)

r(`0)=ri

w(`0;x)

!

,

where ⇡ = {{u
1

, v
1

}, . . . , {uk, vk}}. This means that the left hand side of (3.4) is a
sum of the Cauchy products of the series on the right hand side.

Now, consider a weight vector tx where t > 0 is a scaling factor (we scale only
the coordinates corresponding to E). If t is small enough, then all the series that we
are considering are absolutely convergent. Using the fact that a product of absolutely
convergent series converges to the Cauchy product of the series, we get the desired
identity for the weight vector tx. From Lemma 3.13, it follows that the functions � are
analytic functions of t on the set ⇢G(tx) = t⇢G(x) < 1. Hence, by the assumption that
⇢G(x) < 1 and by uniqueness of the analytic continuation, the desired identity follows
also for the weight vector x.

3.8 Proofs of the results for the Ising model
We will need the following classical inequality of Griffiths [28]. Note that this is the
only external result on the Ising model that we use in this thesis.
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Lemma 3.11 (Griffiths, [28]). Let G = (V,E) be any graph and let J = (Je)e2E ,
J 0

= (J 0
e)e2E be such that |Je|  J 0

e for all e 2 E. Then, for all A ⇢ V and � > 0,

h�AiG,�  h�Ai0G,� ,

where the correlation functions are computed for the Ising model with free boundary
conditions and coupling constants J and J 0 respectively.

Remark 3.12. The positive boundary conditions arise from the free boundary condi-
tions in a very natural limiting procedure, namely by taking the limit with the coupling
constants between any two boundary vertices going to infinity and conditioning on one
boundary spin to be positive. In particular, the lemma above implies that the correlation
functions of the Ising model with positive boundary conditions dominate the correlation
functions of the model with free boundary conditions. Moreover, if the coupling con-
stants are positive, and H is a subgraph of G, then the correlation functions of the
Ising model on G with free boundary conditions dominate the corresponding correla-
tion functions on H.

Recall the notation of Theorem 2.7 from Section 2.1.2.

Proof of Theorem 3.1. Let G be a rectangle and let v• be an additional vertex in the
unbounded face of G. Fix a star S = S(u, v), such that both its arms enter G through
the same edge, and the weight vector x0 defined as in (3.12) is equal to x0

� restricted
to G (See Figure 3.2). If B ⇢ @G, then we will always choose S(B) in such a way that
there are no edge crossings between S(B) and G[S , and moreover sgn(S(B),S) = 1.

From Theorem 2.11, we know that the operator norm of ⇤G(x
0
) is bounded above

by � =

tanh �
tanh �c

< 1, and hence also ⇢G(x
0
) < 1. Therefore, using Lemma 3.4 and

Corollary 3.7, we get that for all B ⇢ @G,

ZG,S[S(B)

(x0
) = �G,S[S(B)

(x0
)ZG(x

0
) =

⇣

�G,S(x
0
)�G,S(B)

(x0
) + ✏

⌘

ZG(x
0
)

= �G,S(x
0
)ZG,S(B)

(x0
) + ✏ · ZG(x

0
), (3.16)

where

✏ =
X

⇡2P({u,v}[B)

{u,v}/2⇡

sgn(⇡)
Y

p2⇡

�G,S(p)(x
0
)

=

X

b,b02B

X

⇡2P({u,v}[B)

{u,b},{v,b0}2⇡

sgn(⇡)
Y

p2⇡

�G,S(p)(x
0
)

=

X

b,b02B

±�G,S(u,b)(x
0
)�G,S(v,b0)(x

0
)

X

⇡2P(B\{b,b0})

sgn(⇡)
Y

p2⇡

�G,S(p)(x
0
)

=

X

b,b02B

±�G,S(u,b)(x
0
)�G,S(v,b0)(x

0
)�G,S(B\{b,b0})(x

0
).
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The second equality follows from Lemma 3.6 and the last one from Lemma 3.5. Hence,

|✏| 
X

b,b02B

|�G,S(u,b)(x
0
)| · |�G,S(v,b0)(x

0
)| · |�G,S(B\{b,b0})(x

0
)|

 C��
d(u,B)+d(v,B)

X

b,b02B

�

�

�G,S(B\{b,b0})(x
0
)

�

�

where C� is a constant depending only on � and not on G, and d is the graph distance.
In the second inequality, we used the fact that the functions � can be expressed in terms
of entries of ⇤G(x

0
) (as it was done in the proof of Theorem 2.7), and therefore the

bound follows from the bound on the operator norm of ⇤G(x
0
). Hence by Lemma 3.4,

|✏ · ZG(x
0
)|  C��

d(u,B)+d(v,B)

X

b,b02B

�

�

�G,S(B\{b,b0})(x
0
)ZG(x

0
)

�

�

= C��
d(u,@G)+d(v,@G)

X

b,b02B

�

�ZG,S(B\{b,b0})(x
0
)

�

�

 C��
d(u,@G)+d(v,@G)

X

b,b02B

ZG,S(B\{b,b0})(x).

To conclude the last inequality, we used the fact that ZG,S(B)

(x0
) counts the same

weighted graphs as ZG,S(B)

(x), but some of them get negative signs, whereas in the
latter generating function they all get positive signs. Plugging (3.16) into (3.12) and
using (3.11), we obtain

h�u�vi+G,� = �G,S(x
0
)h�u⇤�v⇤ifree

G⇤,�⇤ + ✏0 = �G,�(x
0
�)h�u⇤�v⇤ifree

G⇤,�⇤ + ✏0,

where

|✏0|  C��
d(u,@G)+d(v,@G)

⇣

X

B⇢@G

X

b,b02B

ZG,S(B\{b,b0})(x)
⌘.⇣

X

B⇢@G
ZG,S(B)

(x)
⌘

= C��
d(u,@G)+d(v,@G)

⇣

X

b,b02@G

X

B⇢@G\{b,b0}

ZG,S(B)

(x)
⌘.⇣

X

B⇢@G
ZG,S(B)

(x)
⌘

 C��
d(u,@G)+d(v,@G)|@G|2.

By Lemma 3.11 and Remark 3.12, h�u⇤�v⇤ifree
G⇤,�⇤ increases to h�u⇤�v⇤ifree

Z2⇤,�⇤ when
G ! Z2. Note that by Remark 3.8,

�G,S(u,v)(x) = �G,�(x) =

1
X

r=1

X

`2Luu⇤
r (G�)

w(`;x),

where Luu⇤

r (G�) is as in (2.48). Therefore, by Theorem 2.7, �G,�(x
0
�) converges to

�Z2,�(x
0
�) as G ! Z2. Using the fact that ✏0 ! 0 as G ! Z2, we finish the proof.

We can now prove Corollary 3.2, and hence provide a complete picture of the mag-
netic phase transition of the Ising model on the square lattice.



3.8. Proofs of the results for the Ising model 59

Proof of Corollary 3.2. By Theorems 2.7 and 3.1, and Remark 3.8,

h�u�vifree
Z2,� = �Z2,�(x

0
�)h�u⇤�v⇤i+Z2⇤,�⇤ and h�u�vi+Z2,� = �Z2,�(x

0
�)h�u⇤�v⇤ifree

Z2⇤,�⇤

for � 2 (0,�c). From the high temperature expansion, we know that for finite rectan-
gles, any two-point function with free boundary conditions is strictly positive. Hence,
by Lemma 3.11 and Remark 3.12, the infinite volume correlation function is also strictly
positive. Using again Lemma 3.11 and the identities above, we obtain that for all
u, v 2 Z2 and � 2 (0,�c),

1  h�u�vi+Z2,�

h�u�vifree
Z2,�

=

h�u⇤�v⇤ifree
Z2⇤,�⇤

h�u⇤�v⇤i+Z2⇤,�⇤

 1.




